1 Au+Au Collision ## Early time scales t<1 fm/c - graceful disorder followed by QCD self-organization - jet production (parton scattering). - heavy quark production (s,c,b) - Before equlibration E/N~constant, no temperature defined. max. temperature = Hagedorn T? - After equilibration. E/N~T, N/V~T³~1/t, T~1/t¹/³ - compare to cosmological, primordial phase $T\sim 1/t^{1/2}$ for radiation dominated universe $T\sim 1/t^{2/3}$ for matter dominated universe - Initial and final entropy is same! Thus N_{aluons} (partonic stage) = N_{pions} (hadronic stage) - QGP expected around $t\sim1$ fm/c ($\epsilon\sim2-3$ GeV/fm 3) - π freeze-out t~8-9.5 fm/c, p/n freeze-out~10-15 fm/c **Au+Au** 2000: $\sqrt{s_{NN}} = 130 \text{ GeV}$ 2001: $\sqrt{s_{NN}} = 200 \text{ GeV}$ #### Data set. #### hot partonic/nuclear matter # Au+Au $\sqrt{s}=130 \text{ GeV}$ N_{Event}=0.7 Mio # ppun-polarizedvertical pol.pile-up!391/nb Au+Au \sqrt{s} =200 GeV N_{Event} = 3.2 Mio longitudinal pol. 373/nb (spin flip snake) Level-3 trigger, rare probes lio EMC jet trigger Au+Au \sqrt{s} =19.6 GeV N_{Event} =~20k asym! cold partonic/nuclear matter #### The QGP. - deconfined (in QCD sense -> no bag anymore) - 02/2000 CERN announced "QGP evidence" - strangeness enhancement (s-quark condensation in high T) - J/ψ suppression (gluon break-up) - QCD phase transition #### 1st order: mixed phase hadrons with QGP bubbles #### 2nd order: from pure100% phase #1 to pure 100% phase #2 predicted by lattice QCD T_c=160±3.5 MeV ## Where is the critical point? At RHIC we are not near the critical point no dramatic $N_{charged}$ event-by-event fluctuations expected. # Thermal fit Result: T=176 MeV (130 GeV), T=177 MeV (200 GeV) 0.4 0.6 0.8 1.0 0.2 $T=2.1\cdot 10^{12} \text{ K}$ Sun 15.6·10^{6 K} Supernova ~10⁹ K Plasma fusion 55·10⁶ K Laser fusion 4·10⁶ K #### Universe: $$T_{Planck}$$ =1.4·10³⁴ K but maybe Hagedorn-limited ~1/R $$\begin{array}{l} \mu_{B} \sim \ N_{Baryon} \text{-} N_{Anti-Baryon} \\ \mu_{B} \sim \ N_{sea} / N_{valence} \end{array}$$ μ_B [GeV] Stars 1.2 # p_T Distributions p+p ($\ddot{0}s=200$ GeV) # p_T Distributions $\underline{Au + Au}$ ($\ddot{0}s = 200 \text{ GeV}$) ## From light to heavy particles - shape changes. For fit of Temperature use m_T instead of p_T $$m_T = \sqrt{p_T^2 + m^2}$$ # How might parton dynamics influence spectral shape? #### What is the size? Hanbury-Brown Twiss Interferometry π - Surprising: Size roughly same AGS = SPS = RHIC R<10 fm - Unexpected: R_{out}/R_{side} ~ 1 explosive source, followed by short "freeze-out" = expanding shell ("blast wave") ## What did we learn from the number of particles? - Initial and final entropy is same N_{gluons} (partonic stage) = N_{pions} (hadronic stage) - perturbative QCD expectation $N_{charged}(\sqrt{s}=200 \text{ GeV})$ = 1.14 x $N_{charged}(\sqrt{s}=130 \text{ GeV})$ fits well -> no QGP needed for interpretation (2 gluons collide) but pQCD models need either/or $$\frac{3\pi^{2}\alpha_{S}A}{2Q_{Saturation}^{2}} \times \frac{x \cdot G(x, Q^{2}(x))}{\pi R_{A}^{2}} = 1$$ - "high density QCD" α_s^{eff} changes - signification of the second - "high temperature QCD" α_s^{eff} changes ~ 1/(33-2N_f)ln(T/T_{crit}) both cases: gluons acquire "mass" (on-shell) # What is the quark/gluon density @ t=0? - we have N_{charged} - we have R assume cylinder, lorentz-invariant rapidity y t=0 ρ=infinite, but @ t=0.2 fm/c: → ρ = 20/fm³ = 15 x ρ[cold Au] (hadrons definitely in-existent) $$\rho \approx \frac{dN}{dy} \frac{1}{\pi R^2 t}$$ What is the energy density? we have average momentum 90% π, so assume m_π, then E²=m²+p² → ε ~ 5 GeV/fm³ = 30 x ε[cold Au] better pQCD estimate: $\epsilon \sim 18$ GeV/fm³ Phys. Lett. B 507(01)121 SPS $\epsilon \sim 3$ GeV/fm³, predictions before RHIC start up to 30 GeV/fm³ #### **Boost-Invariance?** #### Boost invariance only achieved in small region |y|<0.5 - No surprise for protons: p/p~0.65 means 2/3 come from pair production, but 1/3 comes from Au nuclei (de-accelerated) - But surprise for pions! Dogma: ALL particles freeze out at the SAME T, not dependent on (hadron) mass. - If we observe different T, then - re-scattering cross sections are mass or flavor dependent (u,d vs. s quarks) - heavy quarks are produced early (T must be high enough) ## Heavy baryons with 1,2 or 3 strange quarks. blastwave fit $T=110 \text{ MeV}, \beta=0.55$ T=170 MeV, β=0 pp no rescattering, no flow no thermal equilibrium Ω (sss) and Ξ (uss) deviate! Early decoupling from expanding hadronic medium ? Or smaller re-scatter σ_{elast} ? Or indication for partonic flow ? #### How do we create Anti-He? - cluster of particles can also be beam remnants, but cluster of <u>anti</u>-particles cannot <u>dedx offline tract</u> - Coalescence: N protons/neutrons overlapping wave functions (Δx and Δp small) - Ansatz N_{deuteron} = f x N_{proton} "penalty factor" f ~ 1/2500 - Level-3 trigger system, ~4 months: charge = -2 (almost background free, but rare) - total sample 2002 ~160 Anti-He³ no Anti-He⁴ yet (would be first observation) needs 15×10⁶ events ## Why is Anti-³He Temperature so high? - world sample increased by factor ~10 - very high T>750 MeV (m_T scaling ~ heavy = hot) - ψ overlap volume: R³=107±7 fm³ → R=4.8 fm but proton/neutron freeze-out <u>late</u> t~15-20 fm/c → <u>early</u> coalescense (parton vs. baryon coalescense)? NO! p_T distribution is deformed by heavy mass (1/slope≠T) $$p_T^2 = \sqrt{m_T^2 - m^2} (^3He)$$ #### Heavy quarks. Search for Upsilon. Production 90% by gg at t~0.1 fm/c. ## **Heavy Quarks: Di-Lepton Mass Distributions m>5 GeV** ## Jets: gg or qq scattering at very early t~0.2 fm/c. - \sqrt{s} (RHIC) ~ 10. \sqrt{s} (SPS) for the first time σ_{jet} accessible in AA collisions - pQCD \sqrt{s} =200 GeV: ~405 gluons, ~ 132 quarks, ~ 38 anti-quarks Cylinder at t~0.2 fm/c very flat. Color-1 (gg,qq) and Color-8 (qqg, ggg in final states) contribute. Color-8 maybe inhibited by gluon saturation in medium. # Jets at STAR (pp, $\ddot{0}s=200 \text{ GeV}$) 2 jet (gg or qq) all tracks $p_T > 1$ GeV/c What about Au+Au? pQCD estimate $E_T>1$ GeV $N_{Jet}\sim500$ almost impossible for jet finder algorithm. # Back-to-back leading jet particles The away-side jet disappears from p+p to central Au+Au (hot nuclear matter). #### Away-Side Jets in p+p, d+Au, and Au+Au Collisions **Not** disappearing in **cold** nuclear matter #### What did we learn so far? - t<1 fm/c temperature: beyond lattice-QCD boundary prediction. - t<1 fm/c energy density: too high for hadron gas. - parton-hadron transition ("freeze-out") short duration. $R_{out}/R_{side} \sim 1$: There is an explosion - No indication for 1st order phase transition (no long-lived slowly-burning mixed quark-hadron soup). - pQCD models need non-standard extensions, i.e. high density and high temperature. - Back-to-back jets disappear. - Nature recently exhibits surprising macroscopic phenomena (metallic hydrogen, left-handed materials, clockwise tornadoes). We will continue to search for microscopic analogons. #### The STAR Collaboration 468 Collaborators 10 Countries 49 Institutions ~20 Ph.D. theses 14 PRL 3 PRC C. Adler¹¹, Z. Aham med²³, C. Allgower¹², J. Amonett¹⁴, B.D. Anderson¹⁴, M. Anderson⁵, G.S. Averichev⁹. J. Balewski¹², O. Barannikova^{9,23}, L.S. Barnby¹⁴, J. Baudot¹³, S. Bekele²⁰, V.V. Belaga⁹, R. Bellwied³⁰ J. Berger¹¹, H. Bichsel²⁹, L.C. Bland¹², C.O. Blyth³, B.E. Bonner²⁴, R. Bossingham¹⁵, A. Boucham²⁶. A. Brandin¹⁸, R.V. Cadman¹, H. Caines²⁰, M. Calderón de la Barca Sánchez³¹, A. Cardenas²³, J. Carroll¹⁵ J. Castillo²⁶, M. Castro³⁰, D. Cebra⁵, S. Chattopadhyay³⁰, M.L. Chen², Y. Chen⁶, S.P. Chernenko⁹, M. Cherney⁸ A. Chikanian³¹, B. Choi²⁷, W. Christie², J.P. Coffin¹³, L. Conin²⁶, T.M. Cormier³⁰, J.G. Cramer²⁹ H.J. Crawford⁴, M. DeMello²⁴, W.S. Deng¹⁴, A.A. Derevschikov²², L. Didenko², J.E. Draper⁵, V.B. Dunin⁹ J.C. Dunlop³¹, V. Eckardt¹⁶, L.G. Efimov⁹, V. Emelianov¹⁸, J. Engelage⁴, G. Eppley²⁴, B. Erazmus²⁸ P. Fachini²⁵, V. Faine², E. Finch³¹, Y. Fisyak², D. Flierl¹¹, K.J. Foley², J. Fu¹⁵, N. Gagunashvili⁹, J. Gans³¹ L. Gaudichet²⁶, M. Germain¹³, F. Geurts²⁴, V. Ghazikhanian⁶, J. Grabski²⁸, O. Grachov³⁰, D. Greiner¹⁵ V. Grigoriev¹⁸, M. Guedon¹³, E. Gushin¹⁸, T.J. Hallman², D. Hardtke¹⁵, J.W. Harris³¹, M. Heffner⁵ S. Heppelmann²¹, T. Herston²³, B. Hippolyte¹³, A. Hirsch²³, E. Hjort¹⁵, G.W. Hoffmann²⁷, M. Horsley³¹. H.Z. Huang⁶, T.J. Humanic²⁰, H. Hümmler¹⁶, G. Igo⁶, A. Ishihara²⁷, Yu.I. Ivanshin¹⁰, P. Jacobs¹⁵ W.W. Jacobs¹², M. Janik²⁸, I. Johnson¹⁵, P.G. Jones³, E. Judd⁴, M. Kaneta¹⁵, M. Kaplan⁷, D. Keane¹⁴ A. Kisiel²⁸, J. Klay⁵, S.R. Klein¹⁵, A. Klyachko¹², A.S. Konstantinov²², L. Kotchenda¹⁸, A.D. Kovalenko⁹ M. Kramer¹⁹, P. Kravtsov¹⁸, K. Krueger¹, C. Kuhn¹³, A.I. Kullkov⁹, G.J. Kunde³¹, C.L. Kunz⁷, R.Kh. Kutuev¹⁰ A.A. Kuznetsov⁹, L. Lakehal-Ayat²⁶, J. Lamas-Valverde²⁴, M.A.C. Lamont³, J.M. Landgraf², S. Lange¹¹, C.P. Lansdell²⁷, B. Lasiuk³¹, F. Laue², A. Lebedev², T. LeCompte¹, R. Lednický⁹, V.M. Leontiev²² M.J. LeVine², Q. Li³⁰, Q. Li¹⁵, S.J. Lindenbaum¹⁹, M.A. Lisa²⁰, T. Ljubick², W.J. Llope²⁴, G. LoCurto¹⁶ H. Long⁶, R.S. Longacre², M. Lopez-Noriega²⁰, W.A. Love², D. Lynn², R. Majka³¹, S. Margetis¹⁴, L. Martin²⁸ J. Marx¹⁵, H.S. Matis¹⁵, Yu.A. Matulenko²², T.S. McShane⁸, F. Meissner¹⁵, Yu. Melnick²², A. Meschanin²² M. Messer², M.L. Miller³¹, Z. Milosevich⁷, N.G. Minaev²², J. Mitchell²⁴, V.A. Moiseenko¹⁰, D. Moltz¹⁵ C.F. Moore²⁷, V. Morozov¹⁵, M.M. de Moura³⁰, M.G. Munhoz²⁵, G.S. Mutchler²⁴, J.M. Nelson³, P. Nevski² V.A. Nikitin¹⁰, L.V. Nogach²², B. Norman¹⁴, S.B. Nurushev²², G. Odyniec¹⁵, A. Ogawa²¹, V. Okorokov¹⁸ M. Oldenburg ¹⁶, D. Olson¹⁵, G. Paic²⁰, S.U. Pandey³⁰, Y. Panebratsev⁹, S.Y. Panitkin², A.I. Pavlinov³⁰ T. Pawlak²⁸, V. Perevoztchikov², W. Peryt²⁸, V.A Petrov¹⁰, W. Pinganaud²⁶, E. Platner²⁴, J. Pluta²⁸, N. Porile²³ J. Porter², A.M. Poskanzer¹⁵, E. Potrebenikova⁹, D. Prindle²⁹, C. Pruneau³⁰, S. Radomski²⁸, G. Ral¹⁵, O. Ravel²⁶ R.L. Ray²⁷, S.V. Razin^{9,12}, D. Reichhold⁸, J.G. Reid²⁹, F. Retiere¹⁵, A. Ridiger¹⁸, H.G. Ritter¹⁵, J.B. Roberts²⁴ O.V. Rogachevski⁹, J.L. Romero⁵, C. Roy²⁸, D. Russ⁷, V. Rykoy³⁰, I. Sakrejda¹⁵, J. Sandweiss³¹, A.C. Saulys². I. Savin¹⁰, J. Schambach²⁷, R.P. Scharenberg²³, K. Schweda¹⁵, N. Schmitz¹⁶, L.S. Schroeder¹⁵, A. Schüttauf¹⁶ J. Seger⁸, D. Seliverstov¹⁸, P. Sevboth¹⁶, E. Shahaliev⁹, K.E. Shestermanov²², S.S. Shimanskii⁹, V.S. Shvetcov¹⁰ G. Skoro⁹, N. Smirnov³¹, R. Snellings¹⁵, J. Sowinski¹², H.M. Spinka¹, B. Srivastava²³, E.J. Stephenson¹² R. Stock¹¹, A. Stolpovsky³⁰, M. Strikhanov¹⁸, B. Stringfellow²³, H. Stroebele¹¹, C. Struck¹¹, A.A.P. Sualde³⁰, E. Sugarbaker²⁰, C. Suire¹³, M. Sumbera⁹, T.J.M. Symons¹⁵, A. Szanto de Toledo²⁵, P. Szarwas²⁸, J. Takahashi²⁵ A.H. Tang¹⁴, J.H. Thomas¹⁵, V. Tikhomirov¹⁸, T.A. Trainor²⁹, S. Trentalange⁶, M. Tokarev⁹, M.B. Tonjes¹⁷ V. Trofimov¹⁸, O. Tsai⁶, K. Tumer², T. Ullrich², D.G. Underwood¹, G. Van Buren², A.M. VanderMolen¹⁷ A. Vanyashin¹⁵, I.M. Vasilevski¹⁰, A.N. Vasillev²², S.E. Vigdor¹², S.A. Voloshin³⁰, F. Wang²³, H. Ward²⁷ J.W. Watson¹⁴, R. Wells²⁰, T. Wenaus², G.D. Westfall¹⁷, C. Whitten Jr. ⁶, H. Wieman¹⁵, R. Willson²⁰ S.W. Wissink¹², R. Witt¹⁴, N. Xu¹⁵, Z. Xu³¹, A.E. Yakutin²², E. Yamamoto⁶, J. Yang⁶, P. Yepes²⁴, A. Yokosawa¹, V.I. Yurevich⁹, Y.V. Zanevski⁹, I. Zborovský⁹, W.M. Zhang¹⁴, R. Zoulkarneev¹⁰, A.N. Zubarev⁹